Ammonium sulfate treatment at the TiO2/perovskite interface boosts operational stability of perovskite solar cells
نویسندگان
چکیده
Sulfate functionalization on meso-TiO 2 ETL lowers the conduction band level and suppresses deprotonation of organic cations hybrid perovskite at perovskite/ETL interface, resulting in improved operational stability solar cells.
منابع مشابه
Application of Au@SiO2 Plasmonic Nanoparticles at Interface of TiO2 Mesoporous Layers in Perovskite Solar Cells
To investigate the plasmonic effect in perovskite solar cells, the effect of depositing Au@SiO2 nanoparticles on the top and the bottom of mesoporous TiO2 layers was studied. First, Au@SiO2 nanoparticles were synthesized. The particles were then deposited at the different interfaces of mesoporous TiO2 layers. Although the two structures show approximately similar optical absorption, only cells ...
متن کاملStability Issues on Perovskite Solar Cells
Organo lead halide perovskite materials like methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide (HC(NH2)2PbI3) show superb opto-electronic properties. Based on these perovskite light absorbers, power conversion efficiencies of the perovskite solar cells employing hole transporting layers have increased from 9.7% to 20.1% within just three years. Thus, it is apparent that pero...
متن کاملFast Crystallization and Improved Stability of Perovskite Solar Cells with Zn2SnO4 Electron Transporting Layer: Interface Matters.
Here we report that mesoporous ternary oxide Zn2SnO4 can significantly promotes the crystallization of hybrid perovskite layers and serves as an efficient electron transporting material in perovskite solar cells. Such devices exhibit an energy conversion efficiency of 13.34%, which is even higher than that achieved with the commonly used TiO2 in the similar experimental conditions (9.1%). Simpl...
متن کاملVersatile plasmonic-effects at the interface of inverted perovskite solar cells.
Plasmonics is a highly promising approach to enhancing the light-harvesting properties of hybrid organic/inorganic perovskite solar cells. In the present work, our cells have a p-i-n inverted planar structure. An ultrathin NiO film with two different thicknesses of 5 and 10 nm prepared by a pulsed laser deposition process on an ITO substrate with a faceted and furrowed surface enabled the forma...
متن کاملStrained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells
Organic-inorganic hybrid perovskite (OIHP) solar cells have achieved comparable efficiencies to those of commercial solar cells, although their instability hinders their commercialization. Although encapsulation techniques have been developed to protect OIHP solar cells from external stimuli such as moisture, oxygen, and ultraviolet light, understanding of the origin of the intrinsic instabilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Materials Chemistry C
سال: 2021
ISSN: ['2050-7526', '2050-7534']
DOI: https://doi.org/10.1039/d1tc02657g